Search results for "Organic polymer"

showing 10 items of 21 documents

Transformation of Construction Cement to a Self-Healing Hybrid Binder

2019

A new biomimetic strategy to im prove the self-healing properties of Portland cement is presented that is based on the application of the biogenic inorganic polymer polyphosphate (polyP), which is used as a cement admixture. The data show that synthetic linear polyp, with an average chain length of 40, as well as natural long-chain polyP isolated from soil bacteria, has the ability to support self-healing of this construction material. Furthermore, polyP, used as a water-soluble Na-salt, is subject to Na+/Ca2+ exchange by the Ca2+ from the cement, resulting in the formation of a water-rich coacervate when added to the cement surface, especially to the surface of bacteria-containing cement/c…

0211 other engineering and technologies02 engineering and technologylaw.inventionlcsh:Chemistrychemistry.chemical_compoundBiomimetic MaterialsPolyphosphateslaw021105 building & constructionComposite materiallcsh:QH301-705.5SpectroscopycoacervateCoacervatesoil bacteriaGeneral Medicine021001 nanoscience & nanotechnology6. Clean waterComputer Science Applicationsmicrocapsulessurgical procedures operative0210 nano-technologyinorganic polyphosphateManufactured MaterialsPortland cementMaterials scienceArticleCatalysisInorganic Chemistryotorhinolaryngologic diseasesself-healingPhysical and Theoretical ChemistryMolecular BiologyCementSoil bacteriaInorganic polymerConstruction MaterialsSpectrum AnalysisPolyphosphateOrganic ChemistryWaterModels Theoreticaldigestive system diseasesPortland cementlcsh:Biology (General)lcsh:QD1-999chemistrySelf-healingMicroscopy Electron ScanningHardening (metallurgy)concretemicrocracksInternational Journal of Molecular Sciences
researchProduct

Collagen-inducing biologization of prosthetic material for hernia repair: Polypropylene meshes coated with polyP/collagen

2017

Prostethic mesh material such as nonabsorbable polypropylene used in open and laparoscopic hernia repair are characterized by controllable mechanical properties but may elicit undesirable physiological reactions due to the nonphysiological inert polymer material. We succeeded in developing a biocompatible coating for these meshes, based on a physiological inorganic polymer, polyphosphate (polyP) that is morphogenetically active and used as a metabolic energy source, and a collagen matrix. The polyP/collagen hydrogel material was prepared by a freeze-extraction method, with amorphous Ca-polyP microparticles. Electron microscopy (SEM and REM) studies revealed that the polyP/collagen coats are…

0301 basic medicineMaterials scienceBiomedical Engineering02 engineering and technologyMatrix (biology)engineering.materiallaw.inventionBiomaterials03 medical and health scienceschemistry.chemical_compoundCoatinglawchemistry.chemical_classificationPolypropyleneInorganic polymerMesenchymal stem cellPolymerAnatomy021001 nanoscience & nanotechnology030104 developmental biologychemistryengineeringElectron microscope0210 nano-technologyLayer (electronics)Biomedical engineeringJournal of Biomedical Materials Research Part B: Applied Biomaterials
researchProduct

3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone.

2017

Abstract Here we describe the formulation of a morphogenetically active bio-ink consisting of amorphous microparticles (MP) prepared from Ca 2+ and the physiological inorganic polymer, polyphosphate (polyP). Those MP had been fortified by mixing with poly-e-caprolactone (PCL) to allow 3D-bioprinting. The resulting granular PCL/Ca-polyP-MP hybrid material, liquefied by short-time heating to 100 °C, was used for the 3D-printing of tissue-like scaffolds formed by strands with a thickness of 400 µm and a stacked architecture leaving ≈0.5 mm 2 -sized open holes enabling cell migration. The printed composite scaffold turned out to combine suitable biomechanical properties (Young’s modulus of 1.60…

0301 basic medicineScaffoldMaterials sciencePolyestersBiomedical EngineeringNanoparticle02 engineering and technologyBiochemistryBone and BonesBiomaterials03 medical and health scienceschemistry.chemical_compoundCell Line TumorHumansMolecular BiologySaos-2 cellsInorganic polymerTissue EngineeringTissue ScaffoldsRegeneration (biology)BiomaterialGeneral Medicine021001 nanoscience & nanotechnology030104 developmental biologyDurapatitechemistryPolycaprolactonePrinting Three-Dimensional0210 nano-technologyHybrid materialBiotechnologyBiomedical engineeringActa biomaterialia
researchProduct

Fabrication of a new physiological macroporous hybrid biomaterial/bioscaffold material based on polyphosphate and collagen by freeze-extraction

2020

We describe the fabrication of a new scaffold, an inorganic–organic hybrid biomaterial, consisting of the physiological polymers: the inorganic polymer polyphosphate (polyP), as well as the organic macromolecules collagen and chondroitin sulfate. The polyP polymer is composed of multiple phosphate orthophosphate units linked together by high-energy phosphoanhydride bonds. Chondroitin sulfate has been included due to its hydrogel-forming properties. In the presence of Ca2+ ions, the randomly coiled polyP reorganizes together with collagen and chondroitin sulfate to linear molecules which undergo hardening. This scaffold is deposited as amorphous Ca–polyP nanoparticles (size ≈20–40 nm large) …

0301 basic medicinechemistry.chemical_classificationInorganic polymerScaffoldMaterials sciencePolyphosphateBiomedical EngineeringNanoparticleBiomaterial02 engineering and technologyGeneral ChemistryGeneral MedicinePolymer021001 nanoscience & nanotechnology03 medical and health scienceschemistry.chemical_compound030104 developmental biologyBiochemistrychemistryBiophysicsGeneral Materials ScienceChondroitin sulfate0210 nano-technologyMacromoleculeJournal of Materials Chemistry B
researchProduct

Genetic, biological and structural hierarchies during sponge spicule formation: from soft sol–gels to solid 3D silica composite structures

2012

Structural biomaterials are hierarchically organized and biofabricated. Although the structural complexity of most bioskeletons can be traced back from the millimeter-scale to the micrometer- or submicrometer-scale, the biological and/or genetic basis controlling the synthesis of these skeletons and their building blocks remained unknown. There is one distinguished example, the spicules of the siliceous sponges, for which the principle molecules and molecular-biological processes involved in their formation have been elucidated in the last few years. In this review, recent data on the different levels of molecular, biological and structural hierarchies controlling the synthesis of the pictu…

0303 health sciencesSpiculeInorganic polymerSyneresisNanotechnology02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics03 medical and health scienceschemistry.chemical_compoundSponge spiculechemistryPolymerizationChemical engineeringOrthosilicate0210 nano-technologyFunction (biology)030304 developmental biologySclerocyteSoft Matter
researchProduct

The Understanding of the Metazoan Skeletal System, Based on the Initial Discoveries with Siliceous and Calcareous Sponges

2017

Initiated by studies on the mechanism of formation of the skeletons of the evolutionary oldest still extant multicellular animals, the sponges (phylum Porifera) have provided new insights into the mechanism of formation of the Ca-phosphate/hydroxyapatite skeleton of vertebrate bone. Studies on the formation of the biomineral skeleton of sponges revealed that both the formation of the inorganic siliceous skeletons (sponges of the class of Hexactinellida and Demospongiae) and of the calcareous skeletons (class of Calcarea) is mediated by enzymes (silicatein: polymerization of biosilica; and carbonic anhydrase: deposition of Ca-carbonate). Detailed studies of the initial mineralization steps i…

Calcium Phosphates0301 basic medicineenzyme-mediated biomineral formationPolymerscarbonic anhydrasePharmaceutical ScienceMineralogyReviewBiologyMineralization (biology)Calcium Carbonateamorphous nanoparticles03 medical and health scienceschemistry.chemical_compoundPolyphosphatesCarbonic anhydraseDrug DiscoveryAnimalsHumansbone-hydroxyapatitebiosilicaPharmacology Toxicology and Pharmaceutics (miscellaneous)lcsh:QH301-705.5SkeletonCarbonic Anhydraseschemistry.chemical_classificationInorganic polymerPhylum PoriferaPolyphosphatePhosphatePoriferaDurapatite030104 developmental biologyEnzymechemistryBiochemistrylcsh:Biology (General)calcium carbonate bio-seedsbiology.proteinCalcareousalkaline phosphataseinorganic polyphosphateMarine Drugs
researchProduct

Bioactive and biodegradable silica biomaterial for bone regeneration.

2014

Biosilica, a biocompatible, natural inorganic polymer that is formed by an enzymatic, silicatein-mediated reaction in siliceous sponges to build up their inorganic skeleton, has been shown to be morphogenetically active and to induce mineralization of human osteoblast-like cells (SaOS-2) in vitro. In the present study, we prepared beads (microspheres) by encapsulation of β-tricalcium phosphate [β-TCP], either alone (control) or supplemented with silica or silicatein, into the biodegradable copolymer poly(d,l-lactide-co-glycolide) [PLGA]. Under the conditions used, ≈5% β-TCP, ≈9% silica, and 0.32μg/mg of silicatein were entrapped into the PLGA microspheres (diameter≈800μm). Determination of …

HistologyBone RegenerationBiocompatibilityPhysiologyEndocrinology Diabetes and MetabolismBiocompatible Materials02 engineering and technologyBone healingBone tissue03 medical and health scienceschemistry.chemical_compoundCell Line TumormedicineAnimalsHumansBone regeneration030304 developmental biologyCell Proliferation0303 health sciencesInorganic polymerBiomaterialAnatomy021001 nanoscience & nanotechnologySilicon DioxideMicrospheresPLGAmedicine.anatomical_structurechemistryFemaleImplantRabbits0210 nano-technologyBiomedical engineeringBone
researchProduct

Pyrolysed cork-geopolymer composites: A novel and sustainable EMI shielding building material

2019

Abstract In this investigation, and for the first time, pyrolysed sustainable cork was used to produce waste-based geopolymer-cork composites with enhanced electromagnetic interference (EMI) shielding properties. The influence of the pyrolysed cork amount and the geopolymer porosity on the EMI shielding ability of the composites was studied. The maximum total shielding effectiveness (SET) values achieved by these novel building materials (−13.8 to −15.9 dB) are equal to any other reported geopolymer microwave (MW) absorbers over the X-band, despite containing much lower carbon content. In addition, our composites were produced using an industrial waste (biomass fly ash) as raw material and …

Inorganic polymerMaterials scienceSettore ING-IND/22 - Scienza e Tecnologia dei MaterialiMicrowave absorption0211 other engineering and technologieschemistry.chemical_elementSettore ICAR/10 - Architettura Tecnica020101 civil engineeringBuilding materialComposite02 engineering and technologyengineering.materialRaw materialCorkIndustrial waste0201 civil engineering021105 building & constructionGeneral Materials ScienceComposite; Construction; Cork; Inorganic polymer; Microwave absorptionComposite materialCivil and Structural EngineeringConstructionSettore CHIM/03 - Chimica Generale e InorganicaSettore CHIM/07 - Fondamenti Chimici delle TecnologieBuilding and ConstructionGeopolymerchemistryFly ashElectromagnetic shieldingengineeringCorkCarbon
researchProduct

Cooperativity Scaling and Free Volume in Plasticized Polylactide

2019

The authors would like to thank the region Haute Normandie for their financial support and the acquisition of the Broadband Dielectric Spectrometer. R.G. acknowledges U.S. National Science Foundation (Grant no. DMR-1725188) for the acquisition of PAL spectrometer. The experimental evidence of the increase of activation energy associated with the super Arrhenius behavior governing amorphous polylactide by free volume variations has been obtained through a combination of calorimetric, dielectric, and positron annihilation lifetime measurements. The amount of free volume in polylactide was controlled by the amount of acetyltributylcitrate plasticizer in the composition. Plasticization is shown…

Materials scienceMatériaux [Sciences de l'ingénieur]Polymers and Plasticsgenetic structuresThermodynamicsCooperativity02 engineering and technologyActivation energyDielectric010402 general chemistry01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsInorganic ChemistryFragilityBiopolymersmiscible polymer blendsMaterials ChemistryActivation energycharacteristic length[PHYS]Physics [physics]Drop (liquid)Organic polymersOrganic Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesAmorphous solidfragilty[CHIM.POLY]Chemical Sciences/PolymersVolume (thermodynamics)positron-annihilationtemperature-dependence[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyGlass transitionPlastics[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]dynamic heterogeneity
researchProduct

Theoretical determination of the geometric and electronic structures of oligorylenes and poli(peri‐naphthalene)

1992

We present a theoretical investigation of the electronic structure of oligorylenes (from perylene to heptarylene, including also the naphthalene molecule) and their corresponding polymer poly(peri‐naphthalene) (PPN) using the nonempirical valence effective (VEH) method. The geometry of the unit cell used to generate the polymer is extrapolated from the PM3‐optimized molecular geometries of the longest oligorylenes. That geometry shows some bond alternation along the perimeter carbon chains and a bond length of ≊1.46 Å is calculated for the peri bonds connecting the naphthalene units. The VEH one‐electron energy level distributions calculated for oligorylenes are used to interpret the experi…

OptimizationChemical BondsBand gapStereochemistryExtrapolationElectric ConductorsGeometryGeneral Physics and AstronomyElectronic structureMolecular physicsEnergy LevelsMolecular orbitalPhysical and Theoretical ChemistryBand Structure:FÍSICA::Química física [UNESCO]Electronic band structurePeryleneFilmsValence (chemistry)Organic PolymersChemistryElectronic Structure ; Perylene ; Naphthalene ; Organic Polymers ; Unit Cell ; Geometry ; Extrapolation ; Optimization ; Chemical Bonds ; Carbon ; Chains ; Energy Levels ; Ionization Potential ; Affinity ; Band Structure ; Electric Conductors ; Films ; PyrolysisUnit CellChainsCarbonUNESCO::FÍSICA::Química físicaBond lengthIonization PotentialMolecular geometryElectronic StructureAffinityIonization energyNaphthalenePyrolysis
researchProduct